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X-ray diffraction from films consisting of layers with different thicknesses,

structures and chemical contents is analysed. The disorder is described by

probabilities for different sequences of layers. Closed analytical expressions for

the diffracted X-ray intensity are obtained when the layers form a stationary

Markov chain. The proposed model is applied to the diffraction data from

epitaxial sodium bismuth titanate thin films with Aurivillius structure possessing

such one-dimensional disorder. In this case, the disorder is caused by a random

stacking of three and four perovskite units separated by bismuth oxide

interlayers. The results of analytical calculations are in good agreement with the

experimental data and indicate that the incorporation of sodium in the Bi4Ti3O12

phase causes the formation of a fourth perovskite unit.

1. Introduction

X-ray diffraction is a primary tool to reveal periodicity in

atomic arrangements. However, in real crystals the ideal

periodicity is disturbed by various structural defects, e.g. point

defects, dislocations, stacking faults, deviations from exact

stoichiometry, surface and interfacial roughness, etc. For some

defects (e.g. point defects, roughness), the average lattice is

preserved and sharp Bragg peaks persist, accompanied by

diffuse intensity in their vicinity. The problem appears to be

more complicated when the disorder does not preserve the

average lattice. For example, layer structures with layers of

different thicknesses provide such a type of disorder. Here the

position of a layer is determined by the sum of the thicknesses

of all preceding layers, and the sequence of atomic layers is

aperiodic. In many cases, this disorder can be described in

terms of the probabilities of different layer sequences and

more complicated diffraction patterns show up which cannot

be easily interpreted without an appropriate simulation of

X-ray diffraction.

The X-ray diffraction studies of one-dimensional disorder

have a long history. Landau (1937) and Lifschitz (1937) first

considered this problem theoretically. Their ideas were further

developed in the works of Hendricks & Teller (1942), Kaki-

noki & Komura (1965), Kakinoki (1967), Welberry (1985),

Seul & Torney (1989), Holstein (1993) and others. Kakinoki &

Komura (1965) and Kakinoki (1967) developed a general

description in terms of transfer matrices. Subsequently, using a

generating function formalism, Seul & Torney (1989) derived

the X-ray scattering function for a binary mixture with pure

displacement disorder and nearest-neighbour correlations.

A very similar problem arises in the diffraction from

stepped surfaces. The contribution of a terrace to the

diffraction signal depends on the terrace location, which in

turn depends on the positions and heights of all preceding

steps. This problem was treated by Lent & Cohen (1984) and

Pukite et al. (1985) who described diffraction profiles from

stepped surfaces, with steps whose random distribution can be

interpreted as a stationary Markov chain. Their approach was

developed further by Croset & de Beauvais (1997, 1998) who

proposed a clear and mathematically elegant description of

the problem.

In this work, we have studied sodium bismuth titanate

epitaxial films. These systems show a pronounced one-

dimensional layer disorder in that different elementary unit

cells with varying vertical dimensions are stacked. In order to

simulate the experimentally observed X-ray diffraction

profiles from these systems, we use the model based on the

formalism of Croset & de Beauvais (1997, 1998) which was

reformulated in order to correctly describe the observed one-

dimensional layer disorder.

A statistical model of X-ray scattering by randomly disor-

dered layers in application to complicated oxide structures,

similar to ones considered in the present work, was developed

by Holstein (1993). His study was restricted, however, to a

completely random layer stacking without including correla-

tions between neighbouring layers. In contrast, our model

includes such correlations and Holstein’s model is recovered

as a limiting case.

We first describe in x2 the structure and growth of sodium

bismuth titanate epitaxial films. x3 outlines the experimental

setup for structural characterization of our oxide epitaxial
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films. Then, in x4 the theory for the description of X-ray

scattering from one-dimensional layer disorder follows in

detail. Finally, in x5 the results of experiments and theory are

compared and discussed.

2. Sodium bismuth titanate thin films

Sodium bismuth titanate based compounds are lead-free,

ferroelectric materials with promising functional properties

(Sanson & Whatmore, 2002; Park et al., 1999; Bousquet et al.,

2010) showing Aurivillius or perovskite structure. Aurivillius

phases consist of repeated layering of m perovskite units

(Bim�1TimO3m�1)2� (where some of the Bi atoms can be

replaced by Na) alternating with bismuth oxide (Bi2O2)2+

intermediate layers along the c axis. Starting from Bi4Ti3O12

(an Aurivillius structure with m = 3), a series of layer-

structured compounds with the general compositional

formula Bi4Ti3O12 + xNa0:5Bi0:5TiO3 have been derived:

Na0:5Bi8:5Ti7O27 (m = 3.5), Na0:5Bi4:5Ti4O15 (m = 4) and

Na0:5Bi0:5TiO3 (m = 1) (Sanson & Whatmore, 2005;

Schwarzkopf et al., 2011). m =1 indicates the absence of any

(Bi2O2)2+ layer, that means the pure perovskite structure,

and m = 3.5 describes the interleaved structure made of

alternate phases with m = 3 and m = 4. So far, only compounds

with integer or half integer number m have been found.

Generally, fractional m values correspond to mixed-layer

structures, which contain perovskite-like slabs of different

thicknesses.

Until now research on the material system Bi4Ti3O12 +

xNa0:5Bi0:5TiO3 has been essentially confined to the growth of

bulk crystals and ceramics (Sanson & Whatmore, 2002; Uchida

& Kikuchi, 1978; Ge et al., 2008), while only a few authors have

reported the deposition of thin films with Na0:5Bi0:5TiO3 and

Na0:5Bi4:5Ti4O15 structure (Bousquet et al., 2010; Remondiere

et al., 2008; Zhou et al., 2004). Na0:5Bi8:5Ti7O27 (m = 3.5) has

not been grown in thin-film form so far. In this work, we report

on sodium bismuth titanate thin films grown by metal–organic

chemical vapour phase deposition (MOCVD).

The positions of the Bragg peaks in high-resolution X-ray

diffraction patterns in combination with energy-dispersive

X-ray spectroscopy have been used to successfully identify

the sodium bismuth titanate phases with integer number

m = 3 and m = 4 (Schwarzkopf et al., 2011). However, for

films deposited with a low Na/Bi ratio or at low substrate

temperatures pronounced diffraction peak splittings and

shifts are observed (Schwarzkopf et al., 2011) which

cannot be explained by the known structures Bi4Ti3O12

(m = 3), Na0:5Bi8:5Ti7O27 (m = 3.5) or Na0:5Bi4:5Ti4O15 (m = 4).

Zurbuchen et al. (2007) speculated that a peak splitting

of the (008) Bragg peak may be caused by constructive

interferences due to discrete local shifts in the magnitude of

the apparent film layering repeat distance. In the present

work, we demonstrate that the diffraction peak splittings

and shifts are a direct consequence of a one-dimensional

layer disorder which can be described as a stationary Markov

chain.

3. Experimental

Sodium bismuth titanate films were deposited by liquid-

delivery spin MOCVD. Bi(thd)3 (thd = 2,2,6,6-tetramethyl-3,5-

heptanedione), Ti(OiPr)2(thd)3 (OiPr = iso-propoxide) and

Na(thd), dissolved in toluene, were used as source materials

for Bi, Ti and Na, respectively. The films were deposited in an

Ar/O2 atmosphere with 38% O2 at a constant pressure of

2.6 �103 Pa. Different crystallographic sodium bismuth tita-

nate phases were achieved by varying the substrate tempera-

ture between 873 and 1073 K, and the Na-to-Bi ratio in the

source solutions between 0 and 3. In this way epitaxial thin

films consisting of the Aurivillius phases Bi4Ti3O12, which

exclusively contain m = 3 blocks (Bi2Ti3O10) between two

(Bi2O2)2+ intermediate layers, or Na0:5Bi4:5Ti4O15 with only m

= 4 blocks (Na0:5Bi2:5Ti4O13) were obtained. Also several

interleaved structures consisting of an alternate stacking

of m = 3 and m = 4 blocks could be grown. All sodium

bismuth titanate films were deposited on SrTiO3(001) and

NdGaO3(110) substrates. Details of the deposition process

have been described elsewhere (Schwarzkopf et al., 2011).

The films exhibit thicknesses between 30 and 130 nm. They

were characterized by high-resolution X-ray diffraction

(HRXRD). A two-bounce Ge 220 channel-cut crystal mono-

chromator was utilized to select the Cu K�1 line at � =

1.5406 Å and to collimate the incident X-ray beam to

11 arcsec. Primary slits were used to define the beam size at

the sample to about 0.3 � 5 mm, and corresponding slits were

used in front of the detector. Strain-sensitive �=2� scans were

performed to record the scattered X-ray intensity distribution

along the growth direction.

High-resolution transmission electron microscopy

(HRTEM) was applied to investigate the film structure in

more detail. Cross-section TEM samples were prepared by

grinding on diamond lapping films and final argon ion milling

with low-voltage ion sources using acceleration voltages from

4 kV down to 100 V and liquid-nitrogen cooling for the

sample. The TEM investigations were performed with an FEI

Titan 80–300 microscope equipped with an image CS corrector

and it was operated at 300 kV. The corrector was tuned to low

CS values and minimized residual aberrations to ensure a

spatial resolution close to the limit of the instrument of about

0.07 nm.

For films exclusively composed of Bi4Ti3O12 and

Na0:5Bi4:5Ti4O15 exactly three or four perovskite blocks

between two intermediate (Bi2O2)2+ layers are seen on the

HRTEM images (not shown here), respectively. Figs. 1(a) and

1(b) show the atomic and schematic structures of such three-

and four-unit blocks. The A and B units are defined as

consisting of three and four perovskite units, respectively, and

one (Bi2O2)2+ interlayer. The lengths of the A and B units

correspond to half the c lattice parameter of Bi4Ti3O12 and

Na0:5Bi4:5Ti4O15, respectively.

Beside the ‘pure’ m = 3 and m = 4 phases, thin films with

mixed phases could be observed. As an example Fig. 1(c)

shows a cross-sectional HRTEM image of a sodium bismuth

titanate layer stack with an irregular arrangement of A and B
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units. In the following section we treat this irregular stacking

in the framework of a one-dimensional Markov chain and

develop a theory describing the X-ray scattering from such a

one-dimensional stacking.

4. Theory

4.1. Diffracted intensity from a layered structure

Consider a sequence of N layers (Fig. 2). The layers have

different thicknesses Ln and structure factors Fn. The bottom

of the nth layer zn is given by a sum of thicknesses of all

preceding layers,

zn ¼
Pn�1

k¼1

Lk þ z0: ð1Þ

In the kinematic approximation, the diffraction amplitude for

a given configuration of N consecutive layers is given by

AðQÞ ¼
PN
n¼1

FnðQÞ exp iQznð Þ; ð2Þ

where Q ¼ 4� sin �=� is the scattering vector, 2� being the

angle between the incident and the diffracted waves, and � is

the X-ray wavelength. The diffracted intensity is the squared

modulus of the amplitude,

AðQÞ
�� ��2¼ PN

n¼1

PN
n0¼1

F�n ðQÞFn0 ðQÞ exp iQ zn0 � znð Þ
� �

; ð3Þ

where the asterisk denotes the complex conjugate. For further

consideration, it is convenient to rewrite equation (3) in an

equivalent form:

jAðQÞj2 ¼
PN�1

n¼1

PN
n0¼nþ1

F�n Fn0 exp½iQðzn0 � znÞ�

þ
PN�1

n¼1

PN
n0¼nþ1

FnF�n0 exp½�iqðzn0 � znÞ�

þ
PN�1

n¼1

F�n Fn: ð4Þ

Let us denote

Yn;n0 ¼ F�n Fn0 exp½iQ zn0 � znð Þ�: ð5Þ

Then, equation (4) can be written as

AðQÞ
�� ��2¼ PN�1

n¼1

PN
n0¼nþ1

Yn0;n þ Y�n0;n
� �

þ
PN�1

n¼1

Yn;n: ð6Þ

The X-ray beam illuminates a large area of the sample that

contains domains with different sequences of layers. Thus, the

intensity [equation (6)] needs to be averaged over all possible

realizations of the layer stacks. This is described in the next

subsection.
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Figure 2
A schematic representation of a film with one-dimensional layer disorder.

Figure 1
Atomic structure and schematics of Aurivillius phases with (a) three (m =
3, Bi4Ti3O12) and (b) four perovskite units (m = 4, Na0:5Bi4:5Ti4O15)
between two Bi2O2ð Þ

2þ interlayers. The three- and four-unit blocks are
denoted further on as A and B units. In the schematic representation, the
rhomb symbolizes a perovskite unit and a grey rectangle the
Bi2O2ð Þ

2þinterlayer. (c) Cross-sectional HRTEM image of a layer stack
which contains both three and four perovskite units.



4.2. Markov chains and average intensity

The nth layer can be in one of several states sn characterized

by the thickness Lsn
and the structure factor Fsn

. Fig. 1(c)

shows an example of a film with monolayers in just two states,

A and B (n = 1, 2). Further experimental examples presented

in x5 demonstrate that two states are enough to model rather

complicated layer distributions. Nevertheless, the analysis of

the present section is quite general and allows an arbitrary

number of states.

Let us denote by Pðsn0 ; sn0�1; . . . snÞ the probability to

observe the layers n0, n0 � 1; . . . n in given states sn0,

sn0�1; . . . sn. The average of a term [equation (5)] is

Yn;n0

� �
¼

P
sn0 ;...sn

Pðsn0 ; sn0�1; . . . snÞYn0;n: ð7Þ

In the following, we consider the states that constitute a

stationary Markov chain with a finite number of states. That

means the probability for the nth layer to be in a given state

depends on the state of the previous layer only. We expect that

this is a reasonable model for a crystal with layer disorder

introduced during growth.

Denoting by PðXjYÞ the conditional probability of obser-

ving event X , provided Y is fixed, and using the well known

formula for the conditional probability, we have

Pðsn0 ; sn0�1; . . . snÞ ¼ Pðsn0 jsn0�1; . . . snÞPðsn0�1; . . . snÞ: ð8Þ

For a Markov chain, the conditional probability in this equa-

tion is equal to Pðsn0 jsn0�1Þ, since it depends only on the state of

the preceding layer. It can be denoted as Psn0 ;sn0�1
. Then,

equation (8) can be written as

Pðsn0 ; sn0�1; . . . snÞ ¼ Psn0 ;sn0�1
Pðsn0�1; . . . snÞ; ð9Þ

and by recurrence,

Pðsn0 ; sn0�1; . . . snÞ ¼
Qn0�1

k¼n

Pskþ1;sk
}sn
: ð10Þ

Here }sn
is the probability of finding the nth layer in the state

sn. For a stationary Markov chain, }sn
does not depend on n.

The relation [equation (1)] used in equation (5) provides

Yn;n0 ¼ F�n Fn0

Qn0�1

k¼n

exp iLkQð Þ: ð11Þ

Substituting the expressions for Yn;n0 and Pðsn0 ; sn0�1; . . . snÞ

from equations (11) and (10), we have

hYn;n0 i ¼
P
sn0

Fsn0

�
P

sn0�1;...snþ1

	 Qn0�1

k¼nþ1

Pskþ1sk
expðiQLsk

Þ




�
P
sn

Psnþ1sn
}sn

F�sn
expðiQLsn

Þ: ð12Þ

This equation can be written in a compact vector form, if we

define the following vectors and matrices:

(a) vector ~}} of stationary probabilities }s,

(b) diagonal matrix }̂} with elements equal to elements

of stationary vector ~}} (i.e. }s0s ¼ �s0s}s; where �s0s is the

Kronecker’s symbol),

(c) vector ~FF of structure factors Fs,

(d) matrix P̂P of probabilities Ps0s,

(e) matrix T̂T of elements Ts0s ¼ Ps0s expðiQLsÞ. This matrix

can be represented as a product T̂T ¼ P̂PÊE, where P̂P is the

probability matrix and ÊE is the diagonal matrix with elements

Es0s ¼ �s0s expðiQLsÞ,

(f) vector ~WW of elements Ws ¼
P

s0 Pss0 expðiQLs0 Þ}s0F
�
s0, or

equivalently in the vector form ~WW ¼ P̂PÊE}̂}~FF�.
Then, equation (12) can be written as

Yn;n0

� �
¼ ~FFTT̂Tn0�n�1 ~WW ð13Þ

for n 6¼ n0 and

Yn;n

� �
¼ ~FFT}̂}~FF� ð14Þ

for n ¼ n0. Here ~FFT is the transposed vector. Now the

summation of geometrical series in equation (6) can be

performed, and finally we have

AðqÞ
�� ��2D E

¼ 2Re
h

N ~FFTĜG ~WW � ~FFTĜG2 ÎI � T̂TN
� �

~WW
i
þ N ~FFT}̂}~FF�;

ð15Þ

with ĜG ¼ ÎI � T̂T
� ��1

, where ÎI stands for the identity matrix.

The inverse matrix ĜG exists for all values of Q except

some isolated values given by det ÎI � T̂T
� �

¼ 0. The diffracted

intensity at these points has to be calculated separately, taking

into account that one of the eigenvalues of the matrix T̂T

becomes equal to 1, while other eigenvalues remain less than

1. The summation in equation (6) can be performed on the

basis of the eigenvectors of the matrix T̂T, with separate

summation for the eigenvalue 1 and all other eigenvalues.

However, in the practical calculations below, we simply

avoid calculating intensity at these special points and use

equation (15).

4.3. Two-state system

Consider a system with two possible states, 1 and 2. The

sequence of A and B layers in Fig. 2 is an example of such a

system. We also consider below in x5 more complicated states,

particularly the A layer as state 1 and the sequence AB as state

2. Therefore, we do not specify here the structures corre-

sponding to states 1 and 2 and refer to A and B layers as a

simplest realization of the two-state system.

Each state is uniquely characterized by its structure factor

Fs (F1 or F2) and its length Ls (L1 or L2). The matrix P̂P can be

written as

P̂P ¼

�
p q

1� p 1� q

�
; ð16Þ

where p is the conditional probability of finding a layer in state

1 following the one in state 1 (an A unit follows an A unit in

the simplest case). Analogously, 1� q is the conditional

probability of finding a layer in state 2 following the one in

state 2 (a B unit succeeds a B unit). The vector of stationary

probabilities is given by
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~}} ¼ ð1� pþ qÞ
�1

�
q

1� p

�
: ð17Þ

The parameters p and q control the consequent arrangement

of the layers. Fig. 3 shows a schematic diagram of the p� q

plane, and denotes some specific statistical distributions of

layers. For p ¼ 1 and 1� q ¼ 0 we find the system exclusively

in state 1 (only A units, i.e. Bi4Ti3O12 in the system Bi4Ti3O12 +

xNa0:5Bi0:5TiO3) while for p ¼ 0 and 1� q ¼ 1 we find the

system exclusively in state 2 (only B units, i.e. Na0:5Bi4:5Ti4O15

for the same system). On the other hand, for p ¼ 0 and

1� q ¼ 0 we have alternating occupation of layers 1 and 2, i.e.

the ideal ABAB. . . stacking (i.e. Na0:5Bi8:5Ti7O27).

Phase separation occurs for pþ ð1� qÞ> 1, i.e. in the upper

right triangle of Fig. 3. The diagonal p ¼ q connecting two

pure phases is the locus of random stacking sequences. Along

this line, the conditional probability of finding a layer in state 1

following the one in state 1 (or a layer in state 2 following the

one in state 2) is equal to the stationary probability of finding a

layer in state 1 (or 2), p ¼ q=ð1� pþ qÞ. This diagonal of the

parametric diagram corresponds to the Holstein (1993) model.

Further, vectors and matrices defined above can be written

as

~FF ¼

�
F1

F2

�
;

T̂T ¼

	
p expðiQL1Þ q expðiQL2Þ

ð1� pÞ expðiQL1Þ ð1� qÞ expðiQL2Þ



;

~WW ¼

	
p}1F1 expðiQL1Þ þ q}2F2 expðiQL2Þ

ð1� pÞ}1F1 expðiQL1Þ þ ð1� qÞ}2F2 expðiQL2Þ



:

ð18Þ

The average intensity is calculated analytically by substituting

these expressions into equation (15).

5. Results and discussion

We first test and validate our model on the pure phases A and

B (see Figs. 1a, 1b). The experimental �=2� scans and corre-

sponding calculated curves are shown in Fig. 4(a) (samples S1

and S4). The structure factors were calculated for the struc-

tures shown in Figs. 1(a), 1(b). For phase A (Bi4Ti3O12) we use

the data of Hervoches & Lightfoot (1999). The atomic coor-

dinates of phase B (Na0:5Bi4:5Ti4O15) have been constructed

accordingly using the coordinates of phase A with an extra

perovskite unit. For phase B we have assumed that the sodium

atoms replace Bi atoms with the probability 5%. Such repla-

cement probability gives an appropriate intensity ratio of the

diffraction peaks. The calculated curves are rather insensitive

to the replacement probability: the use of 15% sodium in

the calculation does not change the curves noticeably. The

intensities have been normalized to the maximum intensity

and the experimental background has been added to the

simulated data in order to achieve a better matching.

The diffraction peak widths for the pure A and B phases are

due to finite thicknesses of the epitaxial films. The truncation

of the film gives rise to the thickness fringes in the calculated

curves (see the curve S4 in Fig. 4a).

The average intensity [equation (15)] is obtained by sum-

mation of intensities scattered by different domains in the film.

These domains contain, with given probabilities, different

layer sequences. The number of layers in the stack N can also

vary from one domain to the other, because of the film

roughness. Croset & de Beauvais (1998) considered in detail

the average over a broad distribution of the number of layers.

In our case, the distribution is narrow and we perform calcu-

lations simply for fixed N values, which vary in different

samples, depending on the film thicknesses, between 15 and

40. A choice of a certain N value from this range does not have

any noticeable effect, except for the appearance of oscillations

in the vicinity of the peaks at relatively small N. For example,

for sample S4, N was fixed to 15, which results in oscillations in

the simulation curve (see Fig. 4a).

The simulated peaks for the pure phases A and B (samples

S1 and S4) are in good agreement with the experimental ones.

For samples S2 and S3 in Fig. 4 the diffraction patterns are

quite different compared to those of the pure phases: the

original Bi4Ti3O12(004) peak is split into two peaks, while the

Bi4Ti3O12(006) peak is shifted to higher 2� values. The X-ray

diffraction patterns consist of series of broad peaks that

cannot be attributed as belonging to any periodic structure.

However, the simulated X-ray profiles, obtained on the basis

of an irregular stacking of A and B units, are in good agree-

ment with the experimental ones: the peak locations and their

intensities are in accordance with the experimental observa-
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Figure 3
Parametric diagram of possible structures as a function of probabilities p
and q. The values of the probabilities for the samples S1–S8 studied
experimentally are shown. Different symbols correspond to different
choices of the basic units.



tions. The probabilities p and q obtained from the fits are given

in Fig. 4 and also shown in the parametric diagram of Fig. 3.

We have confirmed the analytical results by means of a

Monte Carlo simulation. In the Monte Carlo calculation, a

statistical ensemble of layer stacks is generated with the same

probabilities as in the analytical calculation. The first layer at

the interface is chosen to be in a state s with the probability

equal to stationary probability }s. A sum of intensities due to

individual realizations of the layer stack is calculated. The

results of the Monte Carlo calculations are shown in Fig. 4(a)

for sample S3. The perfect coincidence of the X-ray profiles

calculated analytically and by means of the Monte Carlo

technique proves the correctness of the analytical results. In

the following, we use throughout the analytical calculations

for the analysis of the experimental profiles.

The experimental curves presented in Figs. 4(b), 4(c) cannot

be fitted in the framework of the same model, i.e. as a Markov

sequence of A and B layers. The origin of the disagreement is

long-range-order correlations between non-adjacent layers.

One might overcome this problem by including higher-order

conditional probabilities, i.e. by proceeding from the Markov

chains of rank 1 to chains of higher ranks. This approach,

however, increases the size of the matrices and the number of

parameters to be defined. We succeeded in describing the

experimental curves in another way, by including more

complicated layer sequences by means of redefinition of

elementary units. A detailed HRTEM analysis, see Fig. 1(c),

shows that in many samples the B layer is almost never

followed by another B layer (1� q ’ 0). Then, we consider A

and AB units as two possible elementary layers. This idea has

proved to be quite productive. In Fig. 4(b), several experi-

mental profiles are in good agreement with the calculated

ones, obtained in the framework of the two-state theory of x4.3

but with the redefined elementary units as shown in the inset.

Fig. 4(c) presents an example of the experimental X-ray

diffraction profile that needs another structural model. The

strong peaks correspond to the pure phase of B layers, while

additional weak peaks are in the middle between peak posi-

tions for pure A and B phases (marked by arrows in Fig. 4c)

and therefore correspond to the ordered ABAB. . . layer

sequence. We therefore model this diffraction profile by a

sequence of B and AB units as the basic layers. Again, good

agreement between experimental and calculated curves is

obtained. The value p ¼ 0:95 obtained by the fit points to long

sequences of purely B units in the structure. That means that

we can consider the film S8 as a superposition of separated

phases of m = 3.5 and m = 4.

The parameters p and q obtained for samples S1–S8 are

shown in the diagram of Fig. 3. Since they correspond to three

different choices of basic units and cannot be directly

compared, we use different symbols for each set of basic units.

For the interpretation of the experimental results one

should remember that the substitution of Bi in the perovskite

units by a Na ion is executed by the formation of a fourth

perovskite unit between two adjacent Bi2O2
2+ layers in order

to provide charge neutrality (Schwarzkopf et al., 2011). That

means that Na is incorporated in B-type layers only. From the
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Figure 4
Experimental X-ray diffraction profiles and calculated curves for
different choices of the basic units in the Markov chain: (a) A–B, (b)
A–AB, (c) B–AB model. Arrows in (c) show the peak positions for the
ordered ABAB. . . phase. The probabilities p, q and corresponding value
m are indicated at each curve. The basic units used for the calculation are
schematically shown in the insets. The diffraction peak positions for the
pure A and B phases are marked by orange dotted lines and blue dashed
lines, respectively.



evaluated parameters p and q two main conclusions can be

drawn.

First, for the physical interpretation of the parameters p and

q we have to consider different deposition conditions of the

films S1–S8. S1 was deposited at a low substrate temperature

(923 K) without any Na in the gas phase and, consequently,

results in a pure Bi4Ti3O12 phase. When Na is introduced in

the gas phase, the films consist of an irregular arrangement of

three perovskite units (which do not contain any Na) and four

perovskite units (which contain Na on Bi sites). The Na supply

in the gas phase during the deposition process was sequen-

tially increased from S2 to S3 to S4. Simultaneously the value

p, which indicates the probability that a unit A follows a unit

A, decreases (Fig. 3). That is to say that more and more B units

were incorporated which is correlated with an increased Na

incorporation in the films. A similar effect can be observed

for increasing substrate temperature during the deposition

process. S5, S6 and S7 were deposited at low Na concentration

in the gas phase but increasing substrate temperature. Here, p

decreases again, which is attributed to an enhanced incor-

poration of Na-containing B units. Higher temperature seems

to promote the incorporation of Na ions on Bi sites. Sample S8

(high substrate temperature, low Na supply) shows a signifi-

cant increase of the value p (for relatively high 1� q value)

which according to Fig. 3 might be interpreted as an increasing

tendency for phase segregation. The reason for this behaviour

is not yet clear.

Secondly, the comparison of the simulations with the

experimental HRXRD patterns reveals that not only phases

with an integer number m in the system Bi4Ti3O12 +

xNa0:5Bi0:5TiO3 like the pure Bi4Ti3O12 (only A units) or the

pure Na0:5Bi4:5Ti4O15 (only B units) develop during film

growth, but rather fractional m numbers are also possible.

A fractional m can be determined through the parameters p

and q. If we define the parameter m as the mean number of

perovskite units between two (Bi2O2)2+ interlayers, then using

the stationary probability vector ~}} we can write

m ¼ }1mð1Þ þ }2mð2Þ

¼
qmð1Þ þ ð1� pÞmð2Þ

1� pþ q
; ð19Þ

where mðiÞ are the numbers of perovskite units between two

(Bi2O2)2+ interlayers in unit blocks used for simulation and the

explicit expressions for }i from equation (17) were used.

The values of m calculated with the help of equation (19)

are presented in Fig. 4. The calculated values are almost

always in the range of 3 < m < 3.5 (excluding films consisting

of a pure A or a pure B phase). From these results and in

agreement with the HRTEM observations, we conclude that

the pure recurrent intergrowth of A and B units, which should

lead to an ordered m = 3.5 structure (ABAB . . . ), was not

realized under our preparation conditions. This observation

is in contradiction to Mallick et al. (2005), who have reported

the Na0:5Bi8:5Ti7O27 phase with m = 3.5 for bulk materials.

We tentatively attribute the disordered arrangement of A

and B units to the absence of elastic forces (due to equal in-

plane parameters of the A and B units) or charge-ordering

interactions between the A and B units in the Bi4Ti3O12 +

xNa0:5Bi0:5TiO3 system unlike Rao & Thomas (1985) for

Bi9Ti6CrO27 or Gopalakrishnan et al. (1984) for Bi5Nb3O15.

6. Conclusions

We present a statistical model of X-ray scattering from

partially disordered epitaxial films containing a finite number

of layers of different structures and thicknesses. The analysis is

made in terms of probabilities of different layer sequences. We

find that a wide range of the X-ray diffraction profiles from

sodium bismuth titanate films can be described as layer

sequences with only nearest-neighbour correlations. Specifi-

cally, the disorder is well described by the model of stationary

Markov chains with nearest-neighbour transition prob-

abilities. Using the well developed theory of the Markovian

processes, we have established fully analytical expressions for

the intensity diffracted by disordered epitaxial films.

The simulations were performed for a variety of sodium

bismuth titanate oxide films and are in good agreement with

the experimental data. Together with HRTEM images they

indicate that the incorporation of sodium in the Bi4Ti3O12

phase causes the formation of a fourth perovskite unit. Beside

the ‘pure’ ordered phases Bi4Ti3O12 (m = 3, p = 1, 1� q = 0)

and Na0:5Bi4:5Ti4O15 (m = 4, p = 0, 1� q = 1) we found

disordered phases with fractional numbers m which lead to

Bragg peak splitting and shifts in the X-ray diffraction curves.

For almost all samples under consideration we found values

for m between 3.0 and 3.5. In other words, the probability of

finding two sequential layers consisting of four perovskite

units is very low. The disorder is found to be strongly

dependent on the conditions of film deposition. None of the

investigated films has revealed a pure m = 3.5 structure, which

is attributed to the absence of additional ordering forces. The

presented method turns out to be suitable for describing

disordered intergrowth systems.
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